eComment. The importance of choosing a proper predictor variable selection method in logistic regression analyses

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection for Multivariate Logistic Regression Models

In this paper, we use multivariate logistic regression models to incorporate correlation among binary response data. Our objective is to develop a variable subset selection procedure to identify important covariates in predicting correlated binary responses using a Bayesian approach. In order to incorporate available prior information, we propose a class of informative prior distributions on th...

متن کامل

Variable Selection in Logistic Regression: The British English Dative Alternation

In this paper, we address the problem of selecting the ‘optimal’ variable subset in a logistic regression model for a medium-sized data set. As a case study, we take the British English dative alternation, where speakers and writers can choose between two (equally grammatical) syntactic constructions to express the same meaning. With the help of 29 explanatory variables taken from the literatur...

متن کامل

A variable selection method based on Tabu search for logistic regression models

A Tabu Search method to select variables that are subsequently used in Logistic Regression Models is proposed and analysed. The aim is to find from among a set of m variables a smaller subset which enables an efficient classification of cases. Reducing dimensionality has some advantages such as reducing the costs of data acquisition, better understanding of the final classification model, and a...

متن کامل

Logistic Regression: The Importance of Being Improper

Learning linear predictors with the logistic loss—both in stochastic and online settings— is a fundamental task in learning and statistics, with direct connections to classification and boosting. Existing “fast rates” for this setting exhibit exponential dependence on the predictor norm, and Hazan et al. (2014) showed that this is unfortunately unimprovable. Starting with the simple observation...

متن کامل

A Novel Resampling Method for Variable Selection in Robust Regression

Variable selection in regression analysis is of vital importance for data analyst and researcher to fit the parsimonious regression model. With the inundation of large number of predictor variables and large data sets requiring analysis and empirical modeling, contamination becomes usual problem. Accordingly, robust regression estimators are designed to easily fit contaminated data sets. In the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Interactive CardioVascular and Thoracic Surgery

سال: 2016

ISSN: 1569-9293,1569-9285

DOI: 10.1093/icvts/ivv403